USAAIO
1
Part 18 (5 points, non-coding task)
Lemma 1 implies that the projection of \mathbf{x} onto any direction is a standard normal. Therefore, all directions are homogeneous.
Therefore,
\Bbb P \left( \frac{\mathbf{x}^\top \mathbf{y}}{|| \mathbf{x} ||_2 || \mathbf{y}||_2 } > \epsilon \right)
= \Bbb P \left( \frac{\mathbf{x}^\top \mathbf{y}}{|| \mathbf{x} ||_2 || \mathbf{y}||_2 } > \epsilon \mid \mathbf{x} = \mathbf{\hat x} \right), \ \forall \ \mathbf{\hat x} \in \Bbb R^d .
For simplicity, we consider
\mathbf{\hat x} = \begin{bmatrix}
1 \\
0 \\
\vdots \\
0
\end{bmatrix}
\in \Bbb R^d .
Therefore, we only need to bound
\Bbb P \left( \frac{y_0}{|| \mathbf{y}||_2 } > \epsilon \right)
By symmetry, it is easy to see that
\text{E} \left[ \frac{y_0}{|| \mathbf{y}||_2} \right] = 0 .
Hence, we get
\begin{align*}
\Bbb P \left( \frac{y_0}{|| \mathbf{y}||_2 } > \epsilon \right)
& \leq \frac{\text{Var} \left[ \frac{y_0}{|| \mathbf{y}||_2} \right]}{\epsilon^2} \\
& = \frac{\text{E} \left[ \frac{y_0^2}{|| \mathbf{y}||_2^2} \right]}{\epsilon^2} \\
& = \frac{1}{\epsilon^2 d} \
\text{E} \left[ \frac{y_0^2}{\frac{1}{d}\sum_{i=0}^{d-1} y_i^2} \right]
\end{align*}
where the first inequality follows from the Chebyshev’s inequality.
To prove the theorem, it is equivalent to prove the following lemma.
Lemma 2:
- Let y_0, \cdots , y_{d-1} be identically and independent variables that are all standard normals. Then for large d,
\text{E} \left[ \frac{y_0^2}{\frac{1}{d}\sum_{i=0}^{d-1} y_i^2} \right]
\approx 1 .
In this part, your task is to prove this lemma.
Hint: It is hard to prove this statement in an exact way. You can make any reasonable approximation.
USAAIO
2
\color{green}{\text{### WRITE YOUR SOLUTION HERE ###}}
Since y_i is a standard normal, \text{E} \left[ y_i^2 \right] = 1 and \text{Var} \left[ y_i^2 \right] = 2.
For large d, the central limit theorem implies
\frac{1}{d}\sum_{i=0}^{d-1} y_i^2
\sim N \left( 1, \frac{2}{d} \right) .
Hence, for large d, \frac{1}{d}\sum_{i=0}^{d-1} y_i^2 can be approximated as its mean value, 1.
Therefore, for large d,
\begin{align*}
\text{E} \left[ \frac{y_0^2}{\frac{1}{d}\sum_{i=0}^{d-1} y_i^2} \right]
& \approx \text{E} \left[ y_0^2 \right] \\
& = 1 .
\end{align*}
\color{red}{\text{""" END OF THIS PART """}}