2025 USA-NA-AIO Round 2, Problem 3, Part 20

Part 20 (5 points, non-coding task)

In the loss function, we introduced a crutial learnable parameter \tau, called temperature.

Let us explore some properties of \tau.

Let z_0 > z_1 > \cdots > z_{N-1}.

Define

f_i = \frac{\exp \left( z_i / \tau \right)} {\sum_{j = 0}^{N-1} \exp \left( z_j / \tau \right)} .

Do the following analysis. Reasoning is required.

  1. Compute
\lim_{\tau \rightarrow 0^+} f_i .
  1. Compute
\lim_{\tau \rightarrow \infty} f_i .

\color{green}{\text{### WRITE YOUR SOLUTION HERE ###}}

  1. We have
\begin{align*} \lim_{\tau \rightarrow 0^+} f_i & = \lim_{\tau \rightarrow 0^+} \frac{\exp \left( z_i / \tau \right)} {\sum_{j = 0}^{N-1} \exp \left( z_j / \tau \right)} \\ & = \lim_{\tau \rightarrow 0^+} \frac{\exp \left( \left( z_i - z_0 \right) / \tau \right)} {\sum_{j = 0}^{N-1} \exp \left( \left( z_j - z_0 \right) / \tau \right)} \\ & = \boxed{\begin{cases} 1 & \mbox{if } i = 0 \\ 0 & \mbox{if } i \neq 0 \end{cases}} . \end{align*}
  1. Compute
\begin{align*} \lim_{\tau \rightarrow \infty} f_i & = \lim_{\tau \rightarrow \infty} \frac{\exp \left( z_i / \tau \right)} {\sum_{j = 0}^{N-1} \exp \left( z_j / \tau \right)} \\ & = \frac{1}{\sum_{j = 0}^{N-1} 1} \\ & = \boxed{\frac{1}{N}} . \end{align*}

\color{red}{\text{""" END OF THIS PART """}}