Part 13 (5 points, non-coding task)
In this part, you are asked to compute \nabla_{\mathbf{\beta}}^2 \ L \left( \mathbf{\beta} \right) and express your solutions in two forms. Reasoning is not required.
-
Write \nabla_{\mathbf{\beta}}^2 \ L \left( \mathbf{\beta} \right) in the following summation form:
\nabla_{\mathbf{\beta}} \ L \left( \mathbf{\beta} \right) = \sum_{n=0}^{N-1} \cdots . -
Denote
\mathbf{Z} = \begin{bmatrix} z_0 & 0 & \cdots & 0 \\ 0 & z_1 & \cdots & 0 \\ \vdots & \vdots & \ddots & 0 \\ 0 & 0 & \cdots & z_{N-1} \end{bmatrix} .Write \nabla_{\mathbf{\beta}}^2 \ L \left( \mathbf{\beta} \right) in terms of \mathbf{X}, \mathbf{Z} with matrix operations (the summation symbol is not allowed).