2025 USA-NA-AIO Round 1, Problem 3, Part 13

Part 13 (5 points, non-coding task)

In this part, you are asked to compute \nabla_{\mathbf{\beta}}^2 \ L \left( \mathbf{\beta} \right) and express your solutions in two forms. Reasoning is not required.

  1. Write \nabla_{\mathbf{\beta}}^2 \ L \left( \mathbf{\beta} \right) in the following summation form:

    \nabla_{\mathbf{\beta}} \ L \left( \mathbf{\beta} \right) = \sum_{n=0}^{N-1} \cdots .
  2. Denote

    \mathbf{Z} = \begin{bmatrix} z_0 & 0 & \cdots & 0 \\ 0 & z_1 & \cdots & 0 \\ \vdots & \vdots & \ddots & 0 \\ 0 & 0 & \cdots & z_{N-1} \end{bmatrix} .

    Write \nabla_{\mathbf{\beta}}^2 \ L \left( \mathbf{\beta} \right) in terms of \mathbf{X}, \mathbf{Z} with matrix operations (the summation symbol is not allowed).

\color{green}{\text{### WRITE YOUR SOLUTION HERE ###}}

We have

\begin{align*} \nabla_{\mathbf{\beta}}^2 \ L \left( \mathbf{\beta} \right) & = \boxed{ \sum_{n = 0}^{N-1} \sigma \left( \mathbf{x}^{(n), \top} \mathbf{\beta} \right) \left( 1 - \sigma \left( \mathbf{x}^{(n), \top} \mathbf{\beta} \right) \right) \mathbf{x}^{(n)} \mathbf{x}^{(n)^\top} } \\ & = \boxed{\mathbf{X}^\top \mathbf{Z} \mathbf{X} } . \end{align*}

\color{red}{\text{""" END OF THIS PART """}}