Part 12 (5 points, non-coding task)
In this part, you are asked to compute \nabla_{\mathbf{\beta}} \ L \left( \mathbf{\beta} \right) and express your solutions in two forms. Reasoning is not required.
-
Write \nabla_{\mathbf{\beta}} \ L \left( \mathbf{\beta} \right) in the following summation form:
\nabla_{\mathbf{\beta}} \ L \left( \mathbf{\beta} \right) = \sum_{n=0}^{N-1} \cdots . -
Denote
\mathbf{X} = \begin{bmatrix} \mathbf{x}^{(0), \top} \\ \mathbf{x}^{(1), \top} \\ \vdots \\ \mathbf{x}^{(N-1), \top} \end{bmatrix}and
\mathbf{y} = \begin{bmatrix} y^{(0)} \\ y^{(1)} \\ \vdots \\ y^{(N-1)} \end{bmatrix}and
\mathbf{z} = \begin{bmatrix} \sigma \left( \mathbf{x}^{(0), \top} \mathbf{\beta} \right) \\ \sigma \left( \mathbf{x}^{(1), \top} \mathbf{\beta} \right) \\ \vdots \\ \sigma \left( \mathbf{x}^{(N-1), \top} \mathbf{\beta} \right) \end{bmatrix}Write \nabla_{\mathbf{\beta}} \ L \left( \mathbf{\beta} \right) in terms of \mathbf{X}, \mathbf{y}, \mathbf{z} with matrix operations (the summation symbol is not allowed).