USAAIO
1
Part 7 (10 points, non-coding task)
Use the spectral decomposition result to derive a closed form of F_{n} for any n \in \left\{ 0, 1, \cdots \right\}.
USAAIO
2
\color{green}{\text{### WRITE YOUR SOLUTION HERE ###}}
For n \geq 1, we have
\begin{align*}
\begin{bmatrix}
F_n \\
F_{n-1}
\end{bmatrix}
& = \mathbf{A}^{n-1}
\begin{bmatrix}
F_1 \\
F_0
\end{bmatrix} \\
& = \left( \mathbf{Q} \mathbf{\Lambda} \mathbf{Q}^\top \right)^{n-1}
\begin{bmatrix}
F_1 \\
F_0
\end{bmatrix} \\
& = \mathbf{Q} \mathbf{\Lambda}^{n-1} \mathbf{Q}^\top
\begin{bmatrix}
F_1 \\
F_0
\end{bmatrix} .
\end{align*}
Thus, for n \geq 1, we have
\begin{align*}
F_n & = \begin{bmatrix}
1 & 0
\end{bmatrix}
\mathbf{A}
\begin{bmatrix}
F_1 \\
F_0
\end{bmatrix} \\
& = \begin{bmatrix}
1 & 0
\end{bmatrix}
\mathbf{Q} \mathbf{\Lambda}^{n-1} \mathbf{Q}^\top
\begin{bmatrix}
F_1 \\
F_0
\end{bmatrix} \\
& = \begin{bmatrix}
1 & 0
\end{bmatrix}
\begin{bmatrix}
\frac{\lambda_0}{\sqrt{1 + \lambda_0^2}}
&
\frac{\lambda_1}{\sqrt{1 + \lambda_1^2}} \\
\frac{1}{\sqrt{1 + \lambda_0^2}}
&
\frac{1}{\sqrt{1 + \lambda_1^2}}
\end{bmatrix}
\begin{bmatrix}
\lambda_0^{n-1} & 0 \\
0 & \lambda_1^{n-1}
\end{bmatrix}
\begin{bmatrix}
\frac{\lambda_0}{\sqrt{1 + \lambda_0^2}}
&
\frac{1}{\sqrt{1 + \lambda_0^2}} \\
\frac{\lambda_1}{\sqrt{1 + \lambda_1^2}}
&
\frac{1}{\sqrt{1 + \lambda_1^2}}
\end{bmatrix}
\begin{bmatrix}
F_1 \\
F_0
\end{bmatrix} \\
& = \begin{bmatrix}
\frac{\lambda_0}{\sqrt{1 + \lambda_0^2}}
&
\frac{\lambda_1}{\sqrt{1 + \lambda_1^2}}
\end{bmatrix}
\begin{bmatrix}
\lambda_0^{n-1} & 0 \\
0 & \lambda_1^{n-1}
\end{bmatrix}
\begin{bmatrix}
\frac{\lambda_0}{\sqrt{1 + \lambda_0^2}}
&
\frac{1}{\sqrt{1 + \lambda_0^2}} \\
\frac{\lambda_1}{\sqrt{1 + \lambda_1^2}}
&
\frac{1}{\sqrt{1 + \lambda_1^2}}
\end{bmatrix}
\begin{bmatrix}
F_1 \\
F_0
\end{bmatrix} \\
& = \begin{bmatrix}
\frac{\lambda_0^n}{\sqrt{1 + \lambda_0^2}}
&
\frac{\lambda_1^n}{\sqrt{1 + \lambda_1^2}}
\end{bmatrix}
\begin{bmatrix}
\frac{\lambda_0}{\sqrt{1 + \lambda_0^2}}
&
\frac{1}{\sqrt{1 + \lambda_0^2}} \\
\frac{\lambda_1}{\sqrt{1 + \lambda_1^2}}
&
\frac{1}{\sqrt{1 + \lambda_1^2}}
\end{bmatrix}
\begin{bmatrix}
F_1 \\
F_0
\end{bmatrix} \\
& = \begin{bmatrix}
\frac{\lambda_0^{n+1}}{1 + \lambda_0^2}
+ \frac{\lambda_1^{n+1}}{1 + \lambda_1^2}
&
\frac{\lambda_0^{n}}{1 + \lambda_0^2}
+ \frac{\lambda_1^{n}}{1 + \lambda_1^2}
\end{bmatrix}
\begin{bmatrix}
F_1 \\
F_0
\end{bmatrix} \\
& = \boxed{\left( \frac{\lambda_0^{n+1}}{1 + \lambda_0^2}
+ \frac{\lambda_1^{n+1}}{1 + \lambda_1^2} \right) F_1
+ \left( \frac{\lambda_0^{n}}{1 + \lambda_0^2}
+ \frac{\lambda_1^{n}}{1 + \lambda_1^2} \right) F_0} .
\end{align*}
For n = 0, we can
\frac{\lambda_0^{0+1}}{1 + \lambda_0^2}
+ \frac{\lambda_1^{0+1}}{1 + \lambda_1^2}
= 0
and
\frac{\lambda_0^{0}}{1 + \lambda_0^2}
+ \frac{\lambda_1^{0}}{1 + \lambda_1^2}
= 1 .
Therefore, the above answer holds for all n \in \left\{ 0, 1, \cdots \right\}.
\color{red}{\text{""" END OF THIS PART """}}