USAAIO
1
Part 5 (10 points, non-coding task)
Let us go back to our matrix \mathbf{A}.
In the following eigenvalue equation
\mathbf{A} \mathbf{x} = \lambda \mathbf{x} ,
compute two eigenvalues \lambda_0 and \lambda_1 whose values are in a descending order.
USAAIO
2
\color{green}{\text{### WRITE YOUR SOLUTION HERE ###}}
We solve the following characteristic equation:
\det \left( \mathbf{A} - \lambda \mathbf{I} \right) = 0 .
Thus, we compute \lambda that satisfies
\left( 1 - \lambda \right) \left( - \lambda \right) - 1 \cdot 1 = 0 .
Hence, all eigenvalues are
\boxed{\lambda_0 = \frac{1 + \sqrt{5}}{2} , \quad \lambda_1 = \frac{1 - \sqrt{5}}{2} .}
\color{red}{\text{""" END OF THIS PART """}}