First, we prove that there exists \mathbf{\alpha} satisfying the equation \tilde{K}\mathbf{\alpha} = \mathbf{y}.
To prove this, it is sufficient to prove that \tilde{K} is positive definite and thus invertible.
For any \mathbf{z} \in \Bbb R^m with \mathbf{z} \neq 0, we have
\begin{align*}
\mathbf{z}^T \tilde{K} \mathbf{z}
& = \sum_{i = 1}^m \sum_{j = 1}^m z_i \tilde \kappa \left( \mathbf{x}_i, \mathbf{x}_j \right) z_j \\
& = \sum_{i = 1}^m \sum_{j = 1}^m z_i
\left( \kappa \left( \mathbf{x}_i, \mathbf{x}_j \right) + a \delta \left( \mathbf{x}_i, \mathbf{x}_j \right) \right) z_j \\
& = \sum_{i = 1}^m \sum_{j = 1}^m z_i
\left( \phi \left( \mathbf{x}_i \right)^T \phi \left( \mathbf{x}_j \right) + a \cdot \textbf{1} \left( i = j \right) \right) z_j \\
& = \sum_{i = 1}^m \sum_{j = 1}^m z_i
\phi \left( \mathbf{x}_i \right)^T \phi \left( \mathbf{x}_j \right) z_j
+ a \sum_{i = 1}^m \sum_{j = 1}^m z_i \textbf{1} \left( i = j \right) z_j \\
& = \left( \sum_{i = 1}^m \phi \left( \mathbf{x}_i \right) z_i \right)^\top
\left( \sum_{i = 1}^m \phi \left( \mathbf{x}_i \right) z_i \right)
+ a \sum_{i = 1}^m z_i^2
\\
& > 0 .
\end{align*}
Therefore, \tilde{K} is positive definite.
Second, we prove that the training set is separable in the feature space defined by the mapping \tilde{\phi} of the kernel \tilde{\kappa}.
Let \mathbf{\tilde \alpha} be the solution to the equation \tilde{K} \mathbf{\tilde \alpha} = \mathbf{y}.
We construct \mathbf{\alpha} that satisfies
\mathbf{\tilde \alpha} = \mathbf{\alpha} \otimes \mathbf{y} .
We thus define \mathbf{w} as
\mathbf{w} = \sum_{i=1}^m \tilde \alpha_i \tilde \phi \left( \mathbf{x}_i \right) .
Consider any data point with index j, we have
\begin{align*}
y_j \mathbf{w}^T \tilde \phi \left( \mathbf{x}_j \right)
& = y_j \sum_{i=1}^m \tilde \alpha_i \tilde \kappa \left( \mathbf{x}_i, \mathbf{x}_j \right) \\
& = y_j \sum_{i=1}^m \tilde \alpha_i \tilde \kappa \left( \mathbf{x}_j, \mathbf{x}_i \right) \\
& = y_j \cdot y_j \\
& = 1 \\
& > 0 ,
\end{align*}
where the second equality follows from the property that \kappa \left( \mathbf{x}_i, \mathbf{x}_j \right) = \kappa \left( \mathbf{x}_j, \mathbf{x}_i \right), the last equality follows from the property that y_j \in \left\{ -1 , 1 \right\}.
This completes the proof.