2024 IAIO Question 5.1

The Perceptron algorithm applied to the training set

((\mathbf{x}_1, y_1), \ldots, (\mathbf{x}_m, y_m))

involves the following training loop:

while not converged do
    select i from {1,..., m}
    if y_i <w, x_i>  <=0 then
        w <- w + y_i x_i
    end
end

if \mathbf{w} is initialised to 0, show that \mathbf{w} can be expressed as a linear combination:

\mathbf{w} = \sum_{i=1}^m \alpha_i y_i \mathbf{x}_i,

of the training data, explaining what the value of \alpha_i will be at any stage of the algorithm.

Let the k th update on \mathbf{w} be from data with index j_k.
Thus, after the $k$th update,

\alpha_i \leftarrow \left\{ \begin{array}{ll} \alpha_i + 1 & \mbox{ if } i = j_k \\ \alpha_i & \mbox{ otherwise} \end{array} \right.