2025 USA-NA-AIO Round 1, Problem 2, Part 8

Part 8 (10 points, non-coding task)

This question follows Part 7.

Denote r = \text{rank} \left( \mathbf{W} \right).

Compute the rank of \mathbf{W}^\top \mathbf{W}.

  • Reasoning is required.

\color{green}{\text{### WRITE YOUR SOLUTION HERE ###}}

Let \mathbf{W} be with the following singular value decomposition:

\mathbf{W} = \sum_{i = 0}^{r-1} \mathbf{u}_i \sigma_i \mathbf{v}_i^\top .

Hence,

\begin{align*} \mathbf{W}^\top \mathbf{W} & = \left( \sum_{i = 0}^{r-1} \mathbf{u}_i \sigma_i \mathbf{v}_i^\top \right)^\top \left( \sum_{j = 0}^{r-1} \mathbf{u}_j \sigma_j \mathbf{v}_j^\top \right) \\ & = \sum_{i = 0}^{r-1} \sum_{j = 0}^{r-1} \mathbf{v}_i \sigma_i \mathbf{u}_i^\top \mathbf{u}_j \sigma_j \mathbf{v}_j ^\top \\ & = \sum_{i = 0}^{r-1} \sum_{j = 0}^{r-1} \mathbf{v}_i \sigma_i \sigma_j \delta_{ij} \mathbf{v}_j^\top \\ & = \sum_{i = 0}^{r-1} \mathbf{v}_i \sigma_i^2 \mathbf{v}_j^\top . \end{align*}

This is the singular value decomposition of \mathbf{W} \mathbf{W}^\top. Therefore, the rank of this matrix is also r.

\color{red}{\text{""" END OF THIS PART """}}